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In this paper we investigate some plane curves with many points over Q, finite
fields and cyclotomic fields.

In a previous paper [VV] the first two authors constructed a sequence of ab-
solutely irreducible polynomials Pd(x, y) ∈ Z[x, y] of degree d having low height
and many integral solutions to Pd(x, y) = 0. (The definition of these polynomials
will be recalled in §4.) That investigation also led to the consideration of another
family, namely, equations of the form (f(x)− f(y))/(x− y) with f ∈ Z[x] . It turns
out that variants of this construction also gives interesting polynomials for suitable
choice of f . In this note, we show how to use this idea to give further examples
of polynomials of unbounded degree d over Q with many rational zeros, thus im-
proving the known record for the maximal number of rationals zeros of a smooth
polynomial in two variables over Q of given degree, and also to give examples of
polynomials having the maximal theoretically possible number of zeros at roots of
unity and over finite fields. Finally, we return to the polynomials Pd and show that
for certain special values of d they have a few more zeros than were found there.

Here is a more precise statements of the results obtained, with a few remarks
about each one.

Theorem 1. For each natural number m, the plane projective curve of degree m

defined by the vanishing of the polynomial

Gm(x, y, z) =
∑

i, j, k≥0
i+j+k=m

xiyjzk (1)

is non-singular in characteristic 0 or characteristic p - (m + 1)(m + 2), and has
zeros at 2m2 points where the coordinates x, y and z are roots of unity.

The polynomials Gm, which are in some sense the simplest imaginable homoge-
neous polynomials of degree m (all coefficients are equal!), simultaneously achieve
the optimum for two different problems relating to the number of zeros of a poly-
nomial in two variables: On the one hand, a simple argument (given in §1) shows
that no non-reciprocal plane curve of degree m can vanish at more than 2m2 points
whose coordinates are roots of unity. On the other hand, Theorem 0.1 of [SV] tells
us that an absolutely irreducible plane curve of degree 1 < d < p defined over Fp

has at most d(d + p− 1)/2 points over Fp, and, as we will check in §1, Theorem 1
implies that the curve Gm(xk, yk, zk) = 0 with p−1 = (m+2)k attains this bound.
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Theorem 2. For any integer d divisible by 6 there exist infinitely many polynomials
F (x, y) ∈ Q[x, y] of degree d of the form Fd(x, y) = (f(h(x))−f(h(y)))/(h(x)−h(y))
such that the curve Fd(x, y) = 0 is smooth and contains at least d2 + 6d rational
points.

These are, for large d, the smooth polynomials in two variables with the largest
number of points over Q known. We refer the reader to the introduction of [VV]
for references to some speculations as to whether there is a uniform bound on the
number of rational points on a curve of fixed genus (see also [C]). We note that
there are constructions, due to Brumer, Harris and Mestre (see [C] or [E]) which
lead to curves with many points over number fields. For instance, Harris obtains
plane curves of degree d with 3d2 rational points over cyclotomic fields. Brumer
and Mestre construct hyperelliptic curves of any genus g with 16(g + 1) rational
points over the field of (g + 1)-st roots of unity and 8g + 12 points over Q. These
curves all have big automorphism groups. Silverman has suggested that one should
measure the number of points divided by the order of the automorphism group.
From this point of view the curves occurring in Theorem 2 are good, since they
usually have the involution (x, y) 7→ (y, x) as their only non-trivial automorphism,
and the curves constructed in [VV] are still better, since they probably have no
non-trivial automorphisms at all. Here we will obtain:

Theorem 3. For infinitely many values of d, the equation Pd(x, y) = 0 of degree
d has at least d2 + 2d + 8 integral solutions.

This improves (for some d) the result of [VV], where it was shown that Pd = 0
has at least d2 + 2d + 3 integral solutions for every d. We will also show that the
number “d2 +2d+8” in Theorem 3 can be increased by 1 if we allow rational zeros,
and will give numerical evidence suggesting that in general there are very few, if
any, further rational zeros.

§1. Variations of a construction of Schaefer

A very simple construction of two-variable polynomials with many integral ze-
ros was suggested by Ed Schaefer: if f(x) ∈ Z[x] has distinct integer roots, say
α1, . . . , αn, then the polynomial f(x) + λf(y), which is irreducible for generic λ,
has degree d = n and n2 integral roots at (x, y) = (αi, αj). To improve this, we
take λ = −1. The polynomial f(x) − f(y) now has the linear factor x − y. If we
remove it, then the quotient is usually irreducible, has degree d = n − 1, and has
n2−n = d2 + d roots (x, y) = (αi, αj), αi 6= αj , which is slightly better in terms of
the degree. If f is also assumed to be even, then f(x)− f(y) is divisible by x2− y2

and the quotient has degree d = n− 2 and n(n− 2) = d2 + 2d roots, very nearly as
good as the number d2 + 2d + 3 found in [VV] for the polyomials Pd, and this can
be improved still further in some cases, as we will see below.
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First, however, we look at a generalization of this construction, replacing “even”
by “invariant under multiplying x or y by ζ, where ζ is a kth root of unity.”
This of course requires working over a field K which contains the kth roots of
unity, so no longer applies to Q, but will be of interest in the cases of cyclotomic
and of finite fields. Let K be such a field and set f(x) =

∏
(xk − αk

i ), where
α1, . . . , αr are elements of K× whose kth powers are distinct. Then the polynomial
P (x, y) = (f(x) − f(y))/(xk − yk) has degree d = k(r − 1) and vanishes on the
k2r(r−1) points (ζαi, ζ

′αj), where ζ, ζ ′ are k-th roots of unity and i 6= j. Thus we
get polynomials of degree d with d2 + kd points over any number field containing
the k-th roots of unity, though it is unclear how good these examples really are.

More interesting is what the construction gives in the case of finite fields. Let p

be a prime and k a divisor of p−1, k < (p−1)/2. Let r+1 = (p−1)/k. We then get
polynomials of degree d = p−1−2k with d2+kd = d(d+p−1)/2 points over Fp, and
this achieves the upper bound from [SV] mentioned in the introduction, provided
we know that our polynomials are absolutely irreducible. This information is given
by Theorem 1 in the case of the polynomial f(x) = (x(m+2)k − 1)/(xk − 1), since
then P (x, y) = Gm(xk, yk, 1), with Gm(x, y, z) as in equation (1), so that in this
case we indeed achieve the theoretical upper bound (with d = mk and zeros at all
x, y, z ∈ F×p with xk, yk and zk distinct).

As was also mentioned in the introduction, the same polynomials Gm also achieve
the maximum for the number of zeros at roots of unity of a non-reciprocal polyno-
mial of degree m over Q, or indeed even over R. To see this, let h(x, y) = 0 be such
a polynomial. If we have a solution of h(ζ, ζ ′) = 0 with ζ and ζ ′ roots of unity,
then taking complex congugates we get 0 = h(ζ̄, ζ̄ ′) = h(ζ−1, ζ ′

−1). Thus (ζ, ζ ′) is
also a point on the curve (xy)mh(x−1, y−1), of degree 2m. If those two curves have
no component in common, there can be only 2m2 points in their intersection; we
call such polynomials h or the curves that they define non-reciprocal. For example,
if h is smooth and does not go through the origin then h is non-reciprocal. (For
bounds for general curves see [R]).

§2. Construction of curves with many points over Q

Returning to the case of Q and to P (x, y) of the form (f(x) − f(y))/(x2 − y2)
where f is an even polynomial of degree d + 2 with distinct integral roots, we can
try to improve our lower bound d2 + 2d on the number of zeros of P by looking
for solutions of the equation f(x) = f(y) 6= 0. We list only some first attempts in
that direction; looking for better examples is an amusing game and the reader may
want to play.

The idea is that if f(x) has one or several blocks of zeros in arithmetic pro-
gression, then for certain small values of δ the difference f(x) − f(x + δ) already
has so many known zeros (corresponding to x where f(x) = f(x + δ) = 0) that
the remaining ones are the roots of a polynomial of small degree which may then
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split completely over Q. There are many possible variants. For instance, if we
take f to have its positive roots at a, a + 1, . . . , a + n − 1 for some a and n, then
f(x + 1) = f(x) has only the obvious roots but

f(x + 1)
f(x− 1)

= 1 + 4nx
x2 − a2 − (n− 1)(a− 1

2 )
(x + a)(x + a− 1)(x− a− n)(x− a− n + 1)

,

so if we arrange for κ := a2 + (n− 1)(a− 1
2 ) to be a perfect square, which is easy

to do, then we get eight additional roots (±
√

κ− 1,±
√

κ+1), (±
√

κ+1,±
√

κ− 1)
of the polynomial (f(x)− f(y))/(x2 − y2). (Here a can even be a rational number,
since we can always rescale x and y to get integral roots.) If we take instead f with
its positive roots at 1, 3, . . . , 2k − 1 and 2b + 1, 2b + 3, . . . , 2b + 2l − 1 for some
positive integers k, l and some integer or rational number b, then we find

f(2x + 1)
f(2x− 1)

= 1 + 2
(k + l)x2 − kb(b + l)

(x− k)(x− b− l)(x + b)
,

so whenever kb(b+l)/(k+l) is a perfect square we again get 8 extra roots. Finally, if
we choose f with its positive roots at 1, 3, . . . , 2̂r − 1, . . . , 2n−1 for some 0 < r < n,
then the non-trivial roots of f(x+1) = f(x−1) and of f(x+2) = f(x−2) are given
by (n− 1)x2 = 4nr(r− 1) and (n− 1)x2 = 4n2 + (4r2 − 4r− 3)n− 1, respectively,
and there are many pairs (n, r) for which one of these two equations has rational
solutions, although unfortunately (at least up to n = 1000) none where they both
do.

Summarizing, we have the following result. For each degree d there are infinitely
many two-variable polynomials of degree d of the form (f(x) − f(y))/(x2 − y2)
having at least d2 + 2d + 8 integral zeros.

It is easy to check that for generic even polynomials f which split completely
over Q, the curve defined by (f(x) − f(y))/(x2 − y2) = 0 is smooth. Thus we
can guarantee that polynomials in the above result are smooth at the expense of
reducing the number of points to d2 + 2d.

We can construct polynomials with at least d2 + 3d integral zeros, for all d

divisible by 3, as follows. Let h(x) = x3−x2. It can easily be shown that there exists
infinitely many rational numbers α such that h(x) + α splits completely in Q. Let
α1, . . . , αn be distinct rational numbers such that h(x)+αi splits into three distinct
linear factors in Q. Let f(x) =

∏
(h(x) + αi) and F (x, y) = (f(x)− f(y))/(h(x)−

h(y)), d = 3n− 3. If βij , j = 1, 2, 3 are the roots of h(x)+αi = 0, i = 1, . . . , n, then
F (x, y) = 0 contains the rational points (βij , βi′j′), i, i′ = 1, . . . , n, i′ 6= i, j, j′ =
1, 2, 3. These points number 9n(n− 1) = d2 + 3d, as claimed.

A slight modification of the same idea gives Theorem 2, which we now proceed
to prove.

Proof of Theorem 2. Set h(x) = x6 − 2x4 + x2 and

C(λ) =
(λ(λ− 1)(λ + 1)(2λ− 1)(λ− 2))2

(λ2 − λ + 1)6
.
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Then the polynomial h(x)− C(λ) splits as
∏

α∈S(λ)(x− α) with

S(λ) =
{
± λ2 − 1

λ2 − λ + 1
, ± λ2 − 2λ

λ2 − λ + 1
, ± 2λ− 1

λ2 − λ + 1

}
.

Now let λ1, . . . , λn be rational numbers such that the numbers C(λi) are all distinct
and set f(X) =

∏
i(X − C(λi)) and F (x, y) = (f(h(x)) − f(h(y)))/(h(x) − h(y)).

This polynomial has degree d = 6n − 6 and vanishes for x ∈ S(λi), y ∈ S(λj)
with 1 ≤ i 6= j ≤ n, i.e., at 36n(n − 1) = d2 + 6d rational points. Finally, the
curve defined by F (x, y) = 0 is smooth for almost all (λ1, . . . , λn) ∈ Qn because,
as is easily seen, the set of (complex) n-tuples (λ1, . . . , λn) for which this curve is
smooth is Zariski open.

§3. Proof of Theorem 1

Let m be a natural number and consider the homogeneous polynomial Gm(x, y, z)
defined in the introduction. By summing a geometric series, we can write it in the
form

Gm(x, y, z) =
1

x− y

(
xm+2 − zm+2

x− z
− ym+2 − zm+2

y − z

)
, (2)

which is the form which was used in §1. Writing it this way makes it clear that we
have not merely the m2 + m roots of Gm(ζ, ζ ′, 1) = 0 given by taking ζ and ζ ′ to
be distinct (m + 2)nd roots of unity different from 1, but also the m2 − m roots
of Gm(ζ, ζ ′, 1) = 0 given by taking ζ and ζ ′ to be distinct (m + 1)st roots of unity
different from 1. This proves the second assertion of the theorem.

To prove the first, we note that (2) can be rewritten as Gm = Dm+2/D2, where

Dn = Dn(x, y, z) =

∣∣∣∣∣∣
1 1 1
1 x y

1 xn yn

∣∣∣∣∣∣ . (3)

From now on we fix m and write simply G for Gm(x, y, 1) and D for Dm+2(x, y, 1).
Our first claim is that

Resx(G,
∂G

∂y
) = g(y)m−1 , (4)

where Resx denotes the resultant as polynomials in x and g(y) = G(y, y) =∑m
j=0(j + 1)yj . To prove this, we have to look at the simultaneous zeros of G

and Gy = ∂G/∂y. It is easy to deal with the points where D2 = 0. Ignoring them,
we have that the equations G = Gy = 0 are equivalent to D = Dy = 0. The
polynomial D is the determinant of the matrix with columns v(1), v(x) and v(y),
where v(x) := (1, x, xm+2)t, and similarly Dy is the determinant of the matrix
with columns v(1), v(x), and v′(y) = (0, 1, (m + 2)ym+1)t. If both vanish, then
all four vectors v(1), v(x), v(y) and v′(y) must lie in the same two-dimensional
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space. (It cannot be one-dimensional since v(y) is never proportional to v(1)
for y 6= 1.) In particular this holds for v(1), v(y) and v′(y), so the determi-
nant they define is zero, and this determinant is simply g(y). Hence any zero of
G = Gy = 0 has y-coordinate equal to one of the roots y1, . . . , ym of g(y) = 0, and
conversely each of these roots occurs as the y-coordinate of precisely m− 1 zeros of
G = Gy = 0. (Up to a scalar, the unique vector orthogonal to v(1), v(yi) and v′(yi)
is w(yi) = ((m+1)ym+2

i , −(m+2)ym+1
i , 1), so the roots of G(x, yi) = Gy(x, yi) = 0

are the roots of the polynomial (xm+2−(m+2)ym+1
i x+(m+1)ym+2

i )/(x−1)(x−yi)2

of degree m − 1.) This proves equation (4) up to a constant, which can then be
shown to be 1 by looking at the terms of highest degree.

Now to find the possible singular points of the projective curve C, we must look
for the common zeros of G, Gx, and Gy and hence, by (4), of Gx and g. Again we
can ignore the zeros of D2 and the points at infinity, which are easily dealt with.
Then G = Gx = Gy = 0 is equivalent to D = Dx = Dy = 0. At a simultaneous
zero of G, Gx, and Gy, all five vectors v(1), v(x), v′(x), v(y) and v′(y) must be
in the same 2-dimensional space. By the argument already given, the orthogonal
complement of this space is spanned by the vector w(y), and by symmetry it is also
spanned by w(x), so these two vectors must be equal. Subtracting them, we find
that (m + 1)(xm+2 − ym+2) and (m + 2)(xm+1 − ym+1) both vanish, and this is
clearly impossible if m+1 and m+2 are non-zero. Therefore singularities can only
occur in characteristics dividing (m + 1)(m + 2), as claimed.

Remarks. 1. We have observed numerically the following identity, which would
also imply the statement about non-singularity in Theorem 1, but were unable to
prove it:

Resy(Resx(G,
∂G

∂x
), g) = 2−m(m + 1)m2−2m+2(m + 2)m2−m .

2. In our previous example over finite fields we only considered the points on
G(xk, yk) = 0 above the (m + 2)nd roots of unity, but we can also consider the
(m + 1)st by, for example taking p − 1 = k(m + 1). Incidentally, G(0, ζ, 1) = 0 if
ζ 6= 1 is an (m + 1)st root of unity and there are similar points also on the lines
y = 0 and z = 0. So G(xk, yk) = 0 in this case has k2m(m − 1) + 3km rational
points over Fp. This again attains the bound of Thm. 0.1 of [SV] if k = 2, and
comes fairly close for other small k. It also has the feature that we can obtain
curves of odd degree, which we could not do in the previous example. One can also
try to use simultaneously at least some of the (m + 1)st and (m + 2)nd roots of
unity, but we did not obtain interesting examples this way.

§4. Integral points on the curve Pd(x, y) = 0

In [VV], certain polynomials Pd(x, y) ∈ Z[x, y] of degree d were constructed and
it was shown that Pd for every d is absolutely irreducible and has at least d2+2d+3
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integral solutions to Pd(x, y) = 0. In his review [B] of [VV] for Math. Reviews, A.
Bremner pointed out that in fact one family of integral solutions had been missed
and that in fact the equation Pd(x, y) = 0 has at least d2 +2d+4 integral solutions
when d is odd. This prompted us to look again for patterns in the extra points we
found experimentally which might occur for infinitely many, but not all, d. This
section reports our findings.

The polynomials Pd can be defined by the formula Pd(−X, Y 2) = T2d(X, Y ),
where the Tk[X, Y ] ∈ Z[X, Y ] (k = 0, 1, . . . ) are given by the generating function

H(t) := (1− t)r(1 + t)s =
∞∑

k=0

Tk(−r − s,−r + s)
tk

k!
(5)

or—expanding by the binomial theorem—more explicitly by

Tk(−r − s,−r + s) = k!
k∑

n=0

(−1)n

(
r

n

)(
s

k − n

)
. (6)

We now describe ten constructions of infinite families of integer solutions of the
equation Pd(x, y) = 0. The first four are the ones already given in [VV], but we
re-prove them here for completeness and also because the proofs here, based on
the generating function (5), are in some cases shorter than those in [VV]. The fifth
family gives the extra solution for odd d observed by Bremner, and the first seven
together give (for suitable d) the conclusion of Theorem 2.

(I) r and s small

If r and s are nonnegative integers, then H(t) is a polynomial of degree r + s, so
Tk(−r − s,−r + s) vanishes for k > r + s. This gives us the d(d + 1) integral zeros
(x, y) = (n, m2) of Pd(x, y) = 0, where 0 ≤ m ≤ n ≤ 2d− 1, m ≡ n (mod 2).

(II) x = 4d

If r and s are positive odd integers with sum 2k, then the coefficients of the poly-
nomial H(t) are anti-symmetric (i.e. t2kH(1/t) = −H(t)), so its middle coefficient
vanishes. For Pd this gives the d additional zeros Pd(4d, 4n2) = 0 for 0 < n < 2d,
n odd.

(III) y = 9

A further zero Pd(8d+1, 32) = 0 can be seen as follows. Take r = 4d−1, s = 4d+2
in (5). Then H(t) = (1 + t)3(1− t2)4d−1, and the coefficient of t2d in this is, up to
sign, equal to

(
4d−1

d

)
− 3

(
4d−1
d−1

)
, which indeed vanishes.

(IV) x = 2d− 3 or 2d− 4

The generating function identity (5) and the obvious differential equation

H ′(t)
H(t)

= − r

1− t
+

s

1 + t
7



imply the recursion Tk+1 = Y Tk +k(X + k− 1)Tk−1 for the polynomials Tk(X, Y ).
(This recursion, with suitable initial conditions, was in fact taken as the definition
of Tk in [VV].) For the subfamily Pd(x, y) = T2d(−x,

√
y) this leads to the recursion

Pd+1 = [y − (4d + 1)x + 8d2]Pd − [2d(2d− 1)(x− 2d + 1)(x− 2d + 2)]Pd−1 .

The two coefficients in square brackets vanish if x equals 2d − 1 or 2d − 2 and
y = (4d + 1)x− 8d2, giving two additional integer zeros.

(V) x = 4d− 3

For d odd we have a further solution Pd(4d − 3, (2d − 1)2) = 0. (These are the
points noticed by Bremner.) To prove this we must show that the coefficient of t2d

in H(t) is zero when r = d − 1, s = 3d − 2. For these values of r and s, H(t) =
(1− t2)d−1(1 + t)2d−1, so the coefficient in question is

∑d−1
n=1(−1)d−n

(
d−1
d−n

)(
2d−1
2n

)
,

which vanishes if d is odd because the terms for n and d− n cancel.

(VI) r = 2

For r = 2 the function H(t) in (5) equals (1 + t)s+2 − 4t(1 + t)s, so

Tk(− s− 2, s− 2) = k!
[(

s + 2
k

)
− 4

(
s

k − 1

)]
=

1
4
s(s− 1) · · · (s− k + 3)

[
(2s− 4k + 3)2 − (8k + 1)

]
.

The zeros at s = 0, 1, . . . , k − 3 correspond to construction (I), but if k = 2d and
16d + 1 = a2 for some integer a then we get a new integral point x =

(
a+1
2

)2,
y =

(
a+5
2

)2(a−3
2

)2 on Pd(x, y) = 0. In fact we get two new solutions, since we can
replace a by its negative.

(VII) r = 3, 4, 5

More generally, if r is a fixed positive integer then for k ≥ r the sum in (6) termi-
nates at n = r and can be rewritten as

(
k
r

)−1( s
k−r

)
Qr(k, s) with

Qr(k, s) = r!
r∑

n=0

(−1)n

(
k

n

)(
r + s− k

r − n

)
∈ Z[k, s] ,

a polynomial of degree r. For r odd, we set Q̃r(k, s) = Qr(k, s)/(r + s − 2k) to
remove the factor corresponding to (II) above. Then for r = 3 we find

4 Q̃3(k, s) = (2s− 4k + 3)2 − (24k + 1)

and hence two further integral solutions of Pd = 0 whenever 48d + 1 is a square.
(This case is very similar to (VI), but has been listed separately for convenience in
counting solutions below.) For r = 4 or 5, we find

Q4(k, t + 2k − 4) = 3 (2k − t2 + t− 1)2 − (2t4 − 2t2 + 3) ,

3 Q̃5(k, t + 2k − 5) = 5 (6k − t2 + 3t− 5)2 − (2t4 − 10t2 + 53) ,
8



each giving only a finite number of further solutions corresponding to the integral
points on an elliptic curve of positive rank over Q.

(VIII) x = 2d + 2

Another infinite family of integral zeros of Pd(x, y) = 0 for special d is given by
d = 2c2 − 1, x = y = 4c2 with c ∈ N. This solution is found by going back to the
argument for construction (I) and considering the coefficient of tr+s−2 in H(t).

(IX) x = 2d + 3

Similarly, if we look at the coefficient of tr+s−3 in H(t), then after removing from
it the factor r − s we find a quadratic equation, giving the further integral point
Pd(2d + 3, 6d + 7) = 0 if 6d + 7 is a square. Looking at the coefficients of tr+s−ν

for larger values of ν leads to curves of higher degree (in fact, because of a hidden
symmetry of H(t), to the same ones as in (VII) above) and therefore to no new
infinite families.

(X) x = 2d− 5 or 2d− 6

We could also have obtained the solutions (IV) by observing that for x = 2d−2ν−1
and x = 2d − 2ν − 2 construction (I) gives all but ν of the roots of Pd(x, ·) = 0.
The case ν = 1 corresponds to (IV), while for ν = 2 we are left with a quadratic
polynomial and find

6d2 − 9d + 4 = e2 ⇒ Pd(2d− 5, 5− 6d± 2e) = 0

10d2 − 15d + 9 = f2 ⇒ Pd(2d− 6, 10− 10d± 2f) = 0

The conditions on d are in each case Pell-type equations having infinitely many
solutions, the first being d = 4, 33, 320, 3161, . . . and d = 8, 33, 144, 637, . . . ,
respectively. Here again, larger ν no longer give infinite families of solutions.

We summarize the above constructions (excluding (X) and the elliptic curves in
(VII)) and the numbers of solutions they yield by the table

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX)

d2 + d d 1 2 [odd] 2ε16d+1 2ε48d+1 ε2d+2 ε6d+7

where “[odd]” means 1 if d is odd and 0 otherwise and εn denotes 1 if n is a square
and 0 otherwise. To get the constructions (VI) and (VII) to work simultaneously
we need 16d + 1 = a2 and 48d + 1 = b2 for some integers a and b, so 3a2 − b2 = 2.
This is a Pell-type equation whose positive solutions are given by (b + a

√
3)n =

(1+
√

3)(2+
√

3)n with n ≥ 0. The common value of (a2− 1)/16 and (b2− 1)/48 is
then integral if n is congruent to 0 or 3 (mod 4) and odd if n is congruent to 3 or 4
(mod 8), so for n satisfying the latter congruence all seven constructions (I)–(VII)
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apply and we get d2 + 2d + 8 integral solutions of Pd(x, y) = 0. The set of values
of d obtained in this way is not very dense (its only elements less than 1020 are
d = 105, 1463, 148772396955, and 2072132179845), but it is still infinite, proving
Theorem 2. We can also combine either (V) or (VII) with (VIII) or (IX) instead
of with each other to produce other infinite Pell-like families, but this gives (for d

odd) only d2 + 2d + 7 rather than d2 + 2d + 8 solutions, and we cannot combine
three of these constructions because this corresponds to finding integral points on
an elliptic curve over Q and there are only finitely many.

Remarks.

1. It is very striking that in all of the above constructions except for (IV) and (X)
the values of y are perfect squares, and that the same holds for most (all but 3) of the
“sporadic” solutions listed in [VV]. From a Diophantine point of view, replacing the
equation Pd(x, y) = 0 by Pd(x, y2) = 0 makes the problem incomparably harder
to solve (for instance, already for d = 2 the original equation is easy and has
infinitely many solutions, while the latter has only finitely many and the problem
of finding them is difficult), so that it is downright perverse to throw away the extra
information and list the solutions found merely as solutions of the easier problem.
The reason that this was nevertheless done in [VV] and here is not so much in order
to capture the two extra zeros in (IV), but because we are looking for examples
of polynomials with many zeros relative to their degree, and replacing y by y2 in
Pd(x, y) doubles the degree. In other words, in general there are fewer and fewer
rational or integral points on curves as the degree (or genus) goes up, but for these
special polynomials the opposite is happening and it is therefore advantageous to
forget that y is usually a square. Nevertheless, it seemed reasonable to supplement
the search described in [VV] (which found all solutions with d ≤ 12, |x| ≤ 1000) by
a systematic search for integral zeros of Pd(x, y2) = 0. A search for all zeros in the
range d ≤ 50, 0 ≤ y ≤ 1000 led to the discoveries of some of the above families and
produced the following zeros which do not belong to any of the families (I)–(IX):

(d,
√

y, x) = (2, 6, 66), (2, 91, 1521), (2, 91, 15043), (3, 5, 67), (3, 35, 345),

(7, 4, 98), (17, 6, 514), (18, 21, 67), (18, 55, 67), (22, 5, 67),

(22, 5, 465), (31, 6, 66), (31, 6, 932), (31, 11, 67), (31, 23, 67),

(31, 94, 132), (35, 94, 132), (42, 4, 98), (42, 4, 576), (43, 55, 177)

with no further discernible patterns.

2. Both in [VV] and in the introduction to this paper, the emphasis has been on
integral solutions of Pd(x, y) = 0 or other polynomial equations in two variables.
Actually, there is no real distinction in this context between rational and integral
solutions, if we not quantify things by putting some restriction on the heights of
the polynomials, because if an equation P (x, y) = 0 of degree d has ≥ C rational
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solutions, then the rescaled equation NdP (x/N, y/N) = 0, where N is any common
denominator of these solutions, clearly has ≥ C integral solutions. For the particu-
lar family of polynomials Pd, the large number of integral solutions was so striking
that it seemed a pity to throw away this information by replacing “integral” by
“rational” in the statement of the theorems, especially as these polynomials have
relatively small height and this property would be destroyed by too vigorous a
rescaling. Nevertheless, for the sake of completeness and to have a clear conscience
we should also look for rational solutions. A small computer search (specifically,
a search for all solutions of Pd(x, a/b) = 0 or Pd(x, a2/b2) = 0 with 3 < d ≤ 12,
2 ≤ b ≤ 20, and |a| ≤ 1000, the equations P2 = 0 and P3 = 0 with infinitely many
solutions being omitted) yielded only one additional family,

(X) Pd

(
d− 3

4 , 1
4

)
= 0 for d odd

(whose proof by residue calculus we omit), together with the handful of sporadic
solutions:

d = 4 : (x, y) =
(

5
3 , − 1

3

)
,

(
− 10

11 , − 76
11

)
,

(
71
11 , 71

11

)
,

(
505
121 , 25

121

)
,

d = 5 : (x, y) =
(

7
17 , − 43

17

)
,

(
− 5

19 , − 81
19

)
,

(
124
19 , 124

19

)
.

Two of these are easy to explain and do not generalize (the polynomial Pd(x, x)
vanishes at x = 0, 1, 4, . . . , [

√
2d− 1]2, and for d = 4 or 5 this leaves room for

only one further root, which must then be rational) and all of them have d ≤ 5, so
this data suggests that the special equations Pd(x, y) = 0 indeed have almost no
non-integral rational solutions. Nevertheless, by using the new family (X) we can
present the following minuscule improvement of the previous results:

Theorem 4. The equation Pd(x/4, y/4) = 0 has at least d2 + 2d + 5 integral
solutions for any odd d and at least d2 +2d+9 integral solutions for infinitely many
values of d.
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